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Light scattering by a tissue has a wavelength dependence that depends on the size distribution of
scatterers in the tissue. By measuring the wavelength dependence of scattering, one can deduce
changes in the nanoscale architecture of cells and tissues. This report discusses the connection
between nanoscale architecture and measurable light scattering. The signi¯cance of this work is
to develop label-free optical imaging that describes tissue structure, to complement the absorp-
tion, °uorescence, and Raman scattering spectra that describe the chemical constituents of a
tissue.
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1. Introduction

Optical scattering measurements o®er a label-free
means of characterizing cells and tissues. In other
words, without requiring added dyes or chemical
agents, optical scattering can provide information
about the biomaterial. Hence, optical scattering is an
especially attractive approach toward noninvasive
in vivo imaging and spectroscopy of tissues in medi-
cine and biology. This paper discusses the nature of
light scattering in biomaterials, which is the basis for
such noninvasive interrogation of tissues.

2. The Mechanism of Light Scattering

The scattering of light by cells and tissues involves
the redirection of incident photons into a new
direction. The electromagnetic ¯eld of the light
induces dipoles in the molecules of the biomaterial,
and the collapse of dipoles reradiates photons in an
angular dipole pattern. If the density of molecules
allowing inducible dipoles is uniform, there is no

scatter because there is constructive interference of
all the reradiated ¯elds from all the dipoles in the
original incident direction and destructive inter-
ference at all o®-axis angles of reradiation. For
example, clear glass does not scatter, although glass
is very dense and presents many inducible dipoles,
which is why the refractive index (n) of glass is high.
Figure 1 illustrates schematically how a uniform
distribution of dipoles does not scatter light, but a
nonuniform distribution of dipoles does scatter light.

Biological tissue presents a hierarchy of structure
extending from �10 nm membranes to �10�m
nuclei (Fig. 2). Larger structures such as cells
(10�30�mÞ and arrays of cells (100's�m) may also
redirect light, although at some point as structures
get larger, it is perhaps more appropriate to think of
these structures as microlenses or microlens arrays.

Therefore, a discussion of light scattering by
biological tissues becomes a discussion of size
distribution in the nano-architecture and micro-
architecture of cell interiors and extracellular struc-
tures (e.g., ¯bers, basement membranes). The term
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\particle" is loosely used here to refer to structures
that present variation in refractive index, which
usually corresponds to variation in local mass den-
sity, such that a variation in inducible dipoles occurs,
which scatters light. Such a \particle" can be a dis-
crete structure, like a nucleus, or a continuum of
density °uctuations, such as the variation in
chromosome density within a nucleus.

3. A Fractal Size Distribution for

Scattering Particles in a Tissue

The term \fractal" as applied to the size distri-
bution of particles in cells and tissues implies that

the relative ratio of larger to smaller particles is the
same, regardless of the ¯eld of view, when using a
microscope with di®erent powers of magni¯cation.
This fractal relation can be simply described as a
power law dependence to the size distribution:

�ðdÞ ¼ A
d

1�m

� ��B

; ð1Þ

where �ðdÞ is a probability density function for the
size (d [�m]) of particles, and A is a normalization
factor with units ½�m�1� such thatZ dmax

dmin

�ðdÞdd ¼ 1; ð2Þ

where dmin to dmax is the range of particle sizes
contributing to light scattering. The factor B spe-
ci¯es the shape of the distribution. The literature
has discussed such fractal size distributions with
respect to smoke particles and the ultrastructure of
biological specimens.1�5

4. Estimating Tissue Optical Properties

Using Mie Theory and a Fractal Size
Distribution

The scattering of light by tissue is described by a
scattering coe±cient, �s½cm�1� that describes the
probability of scatter per unit length of photon
travel, and by the anisotropy of scattering, g
(dimensionless), which describes the average cosð�Þ,
where � is the de°ection angle of a scattering event.
These are combined in the \reduced scattering
coe±cient", � 0

s ¼ �sð1� gÞ½cm�1�, which is the
pertinent term for describing light transport when
multiple scattering occurs.

(a) (b)

Fig. 1. Schematic depiction of scattering. (a) A uniform density of dipoles induced by an incident wave of light reradiates such that
o®-axis propagation destructively interferes and the transmitted light remains unscattered. (b) A nonuniform density of dipoles fails
to destructively interfere o®-axis propagation, and photons scatter.

Fig. 2. Hierarchy of light-scattering structures in cells and
tissues. Particles much smaller than the wavelength of light
scatter proportional to ��4 (Rayleigh scattering). Particles
comparable to or greater than the wavelength of light scatter
proportional to ��b, where b � 1 (Mie scattering).
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The particle-size dependence of �s; g, and � 0
s are

illustrated in Fig. 3 based on Mie theory for scat-
tering by small spheres of diameter d. While spheres
are not an accurate depiction of tissue ultra-
structure, Mie theory provides an instructive
example of the behavior of a class of particles. For
sizes much smaller than the wavelength of light
(vertical dashed line), the values of �s and � 0

s

increase as d3. For sizes much larger than the
wavelength of light, the values of �s and � 0

s decrease
as d�1. Sizes close to the wavelength of light are in
the transition between these extremes. Figure 3
illustrates the Mie scattering behavior for each
particular size d at one wavelength, � ¼ 500 nm.

Given the number density, � [#/�m3], of a sphere
of size d½�m� in a medium containing spheres, one
calculates the values of �s and g at one wavelength
�½�m� using Mie theory:

½Qs g� ¼ Mie
npar

n 0
med

;
�d

�=nmed

� �
; ð3aÞ

�s ¼ �Qs

�d2

4
; ð3bÞ

which yields �s in units of ½�m�1�, since d and � are
expressed in �m. To convert to cm�1, multiply by
104½cm�1=�m�1�. The values npar and nmed indicate

the refractive index of the sphere particle and the
surrounding medium. The Mie calculation yields
the e±ciency of scatteringQs, such thatQs times the
geometrical cross-sectional area of the sphere, �d2=4,
yields the scattering cross-section �s. Then �s ¼ ��s.
The anisotropy of scattering, g, is also speci¯ed by
the Mie calculation. This report uses the MATLAB
versions of Mie theory prepared by Maetzler.6

Now consider a mixture of spheres of various
sizes, speci¯ed by the size distribution �ðdÞ in
Eq. (1). One must express the number density
�½�m�3� as a function of particle size to yield a
number density distribution � 0ðdÞ [�m�3 per �m] or
[�m�4]. Assume that the volume fraction of spheres
in the medium is fv. Then the number density dis-
tribution � 0ðdÞ½�m�4� is calculated:

� 0ðdÞ ¼ �

Vnorm

; ð4aÞ

where

Vnorm ¼
Z dmax

dmin

�ðdÞ
fv

�d3

6
dd; ð4bÞ

such that

fv ¼
Z dmax

dmin

� 0ðdÞ �d
3

6
dd: ð4cÞ

Fig. 3. The particle-size dependence of �s, g, and � 0
s for one wavelength, 500 nm for spherical particles ranging from 0:01� 100�m

diameter d. The refractive indices of particle and medium are npar ¼ 1:46 and nmed ¼ 1:35. The volume fraction of spheres is
fv ¼ 0:05.
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The factor �d3=6 is the volume of a sphere of
diameter d. The factor Vnorm is a normalization
constant with units of ½�m3� that serves to convert
� into � 0 and to match the volume fraction fv.
Consequently, the density � equals � 0dd for each
particle size d.

Another factor must be considered, called the
\packing factor", P [dimensionless]. This factor
accounts for the decrease in e®ective scattering by
particles due to their close packing which allows
constructive interference to diminish the e®ective-
ness of the particles in scattering light. This e®ect
can be thought of as a decrease in the apparent
� 0ðdÞ. P is a function of size d.

The � 0ðdÞ and P ðdÞ can now be used to calculate
the total values of �s and � 0

s for the mixture of
spheres:

�s:total ¼
Z dmax

dmin

� 0ðdÞP ðdÞQsðdÞ
�d2

4
dd; ð5aÞ

� 0
s total ¼

Z dmax

dmin

� 0ðdÞP ðdÞQsðdÞ
�d2

4
ð1� gðdÞÞdd;

ð5bÞ
and the total value of g for the mixture is calculated:

gtotal ¼ 1� � 0
s total

�s:total

: ð5cÞ

The wavelength dependence of � 0
s is experimen-

tally observed to behave as

� 0
sð�Þ ¼ a

�

1�m

� ��b

; ð6Þ

and a similar expression can describe �s. Therefore,
the functions � 0

sð�Þ and �sð�Þ can each be described
by parameters a and b as in Eq. (6).

5. Example Calculation

To illustrate the calculation, and to illustrate the
e®ect of the packing factor P ðdÞ, the following
example is considered. Consider a tissue with cells
that contain a lipid content of 5% ðfv ¼ 0:05Þ such
that this lipid is organized into a hierarchy of struc-
tural aggregates approximated by spheres with
diameter d ranging from 0:010�10�m. The particle
size distribution �ðdÞ is speci¯ed by Eq. (1) with
A ¼ 2:69� 10�6½�m�1� and B ¼ 4. Let there be two
types of packing factors: (a) P ðdÞ equal to a constant
value of 1.00, (b) P ðdÞ ¼ erfcðð0:0500�mÞ � dÞ=

ð0:0500�mÞ=2. These �ðdÞ and P ðdÞ are shown in
Fig. 4.

Let the npar ¼ 1:46 (lipid) and nmed ¼ 1:35
(aqueous solution with solutes � cytoplasm). The
estimated values of �s:total; gtotal and � 0

s total as
functions of wavelength � are calculated using Mie
theory using Eqs. (3)�(5), and are shown in Fig. 5.
A ¯t to the data using Eq. (6) is cited for �s and � 0

s.
The solid red line and black dashed line show the
results using the packing factor P#1 and P#2, re-
spectively. The results specify optical properties
that are in the approximate range observed for
biological tissues.

The results illustrate a signi¯cant but modest
e®ect of P ðdÞ on the optical properties. It should be
noted that the P#2 used in this example is a rather
strong packing factor a®ecting particles whose d
match the wavelength of photons in the mid-visible
spectrum.MovingP ðdÞ toward a®ecting smaller sizes
causes the e®ect to lessen.More work on the nature of
the packing factor must be done. It is possible that
the peak magnitude of P ðdÞ may be less than one,
thereby decreasing �s and � 0

s. It is interesting that
� 0
s totalð�Þ is more sensitive to P ðdÞ than �s:totalð�Þ,

since � 0
s total depends on both �s:total and gtotal.

(a)

(b)

Fig. 4. (a) The particle size distribution �ðdÞ. (b) The packing
factor P ðdÞ as two curves, a constant P#1 and a P#2 that
diminishes the contribution of particles smaller than 500 nm.

4 S. L. Jacques

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
1.

04
:1

-7
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
A

Z
H

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
10

/2
4/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



6. Add Extra Rayleigh Scattering

if Collagen is Present

If there is a signi¯cant collagen content in the tissue,
the behavior of scattering in tissues is not simply
��b, with b � 1. The ¯ne structure of the collagen
¯brils presents a large amount of Rayleigh scatter-
ing that behaves as approximately ��4. The total
behavior of � 0

s can be described:

� 0
sð�Þ ¼ a 0 �

1 nm

� ��bMIE

þ c 0
�

1 nm

� ��4

� a
�

1 nm

� ��b

: ð7Þ

For skin, a 0 ¼ 4:43� 103 cm�1; bMie � 0:91, and
c 0 ¼ 1:72� 1012 cm�1, such that � 0

s at 500 nm
wavelength is 43 cm�1. However, ¯tting the behavior
in the limited spectral range of visible to near-infrared
light with a��b yields b � 2:3. Figure 6 illustrates
how ¯tting the limited range available from con-
venient measurements in the visible to near-IR can be
reasonably approximated by a��b, however, the
projection of this scattering into the UV or mid-IR
yields predictions that deviate from the expectations
of Mie theory.

To connect this experimental behavior with the
theoretical predictions of Mie theory, let us postu-
late two size distributions, �1 ¼ A1d

�8 for very
small scatterers that only contribute Rayleigh
scattering and yield ���4 behavior (not shown),
and �2 ¼ A2d

�4 which was shown in Sec. 4 to yield
���1 behavior. The values of A1 and A2 properly
normalize �1 and �2. Then we normalize each dis-
tribution so as to be consistent with the volume
fraction fv. Then we mix the two distributions by
choosing a factor kRayleigh that speci¯es the amount
of extra Rayleigh scattering to be included in the
number density distribution:

� 0ðdÞ ¼ kRayleigh
�1ðdÞR dmax

dmin

�1ðdÞ
fv

�d 3

6 dd

þ ð1� kRayleighÞ
�2ðdÞR dmax

dmin

�2ðdÞ
fv

�d3

6 dd
ð8Þ

Fig. 6. The reduced scattering coe±cient observed in the
400�1,000 nm visible to near-IR range experimentally behaves
as the red solid line, a 0��bMie þ c 0��4. The black dashed line is
the Mie component a 0��bMie . The blue dash�dot line indicates
the ¯t a��b.

(a)

(b)

(c)

Fig. 5. (a) �s:totalð�Þ; (b) gtotalð�Þ; (c) � 0
s:totalð�Þ. The red solid

line and black dashed line respectively show the results for the
two packing factors, P ðdÞ equal to a constant P#1 or a varying
P#2 that diminishes the contribution of particles smaller than
500 nm.
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that is used in Eq. (5) to calculate � 0
sð�Þ. Then this

� 0
sð�Þ is ¯tted by a��b to yield a value b that

characterizes the wavelength-dependent behavior of
scattering.

Figure 7(a) shows the number density distribution
� 0ðdÞ as the value of kRayleigh is varied over several

orders of magnitude. Figure 7(b) shows the value of b
as the kRayleigh is varied, where the x-axis indicates
1� kRayleigh on a logarithmic scale. The case of
kRayleigh ¼ 1:0 corresponds to the red line in Fig. 7(a)
ð1� kRayleigh ¼ 0Þ, and the value of b in Fig. 7(b) is
close to 4. The case of kRayleigh ¼ 0 corresponds to the
blue line in Fig. 7(a) ð1� kRayleigh ¼ 1Þ, and the value
of b in Fig. 7(b) is close to 1.

The best estimate for the � 0ðdÞ that is appropriate
for skin is shown as a dashed black line in Fig. 7(a),
corresponding to 1� kRayleigh ¼ 3:1� 10�5, such
that � 0

sð�Þ � a��2:3.
The dashed black line in Fig. 7(b) indicates the

calculation using the packing factor P#2ðdÞ, which
decreases the in°uence of Rayleigh scatterers,
decreasing b for a particular kRayleigh. The packing
factor becomes a strong e®ect when collagen presents
a strong Rayleigh component to the scattering.

7. Discussion

The equations of Sec. 4 and the example of Sec. 5
outline how one can choose a fractal size distri-
bution �ðdÞ ¼ Ad�B, and predict the wavelength
dependence of scattering, a��b, for either �s or �

0
s.

The simple example of this paper illustrated the
case of a cell composed of 5% lipid that was dis-
tributed as d�B for B ¼ 4. The result is scattering
that falls as ��b with b � 1. However, if the packing
factor strongly attenuates the contribution of
smaller scale nano-architecture, the value of b
drops. The example packing factor P#2ðdÞ in the
example caused b to drop just a little to 0.925 for �s

and to drop signi¯cantly to 0.639 for � 0
s. The P#2ðdÞ

caused g to increase, and scattering became more
forward-directed as the particle size distribution
shifted to large particles. This observation suggests
that the optical property � 0

s is more sensitive to the
nano-architecture than �s, presumably because � 0

s ¼
�sð1� gÞ and g is sensitive to the size distribution.

Measurements sensitive to g should o®er the best
means of characterizing the nano-architecture of
cells and tissues. In our laboratory, we have used
re°ectance-mode confocal microscopy and focus-
tracked optical coherence tomography to specify the
re°ected light from the focus of an objective lens as
the focus is scanned down into a tissue. The
measurement yields an exponential,

RðzfocusÞ ¼ �e��zfocus ; ð9Þ

(a)

(b)

Fig. 7. (a) The number density distributions � 0ðdÞ½cm�4�, as
the fraction of pure Rayleigh scattering (kRayleigh in Eq. (8)) is
varied. When 1� kRayleigh ¼ 10�5; kRayleigh ¼ 0:999990. Red line
is � 0ðdÞ for pure Rayleigh, kRayleigh ¼ 1; � � d�8. The black line
is for kRayleigh ¼ 0; � � d�4. The dashed black line is the best
estimate for the distribution of skin. (b) The factor b in the ¯t
� 0
sð�Þ ¼ a��b. Skin behaves as ��2:3. The dashed black line

indicates the calculation using the packing factor P#2ðdÞ.
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which speci¯es the two parameters called re°ectivity
� [dimensionless] and attenuation �½cm�1�. These
values map into the scattering coe±cient �s and the
anisotropy g (when the absorption coe±cient �a is
relatively low). Hence, the g of a tissue can be
measured noninvasively. We have used this method
to document the drop in g toward more isotropic
scattering when skin has the mutation osteogenesis
imperfecta, which interferes with proper assembly of
collagen ¯ber bundles.7 We have monitored the drop
in g when metal�metalloproteinases degrade col-
lagen in collagen gels.8,9 We have monitored the
increase in g when skin is soaked in glycerol to
achieve optical clearing, apparently causing desic-
cation of the collagen.10

In summary, a Mie model for approximating tis-
sue optical scattering as a mixture of nanoscale to
microscale spheres of lipid in a medium containing
solutes was outlined. The predictions yield values of
scattering �s, anisotropy g, and reduced scattering
� 0
s that are comparable tomeasured values in tissues.
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